
J. Fluid Mech. (2002), vol. 457, pp. 191–212. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112001007546 Printed in the United Kingdom

191

Stability of flow in a wavy channel
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London, Ontario, N6A 5B9, Canada

(Received 2 October 2000 and in revised form 11 September 2001)

Linear stability analysis of flow in a channel bounded by wavy walls is considered. It
is shown that wall waviness gives rise to an instability that manifests itself through
generation of streamwise vortices. The available results suggest that the critical
stability criteria based on the Reynolds number based on the amplitude of the
waviness can be formulated.

1. Introduction
Rough walls exist in all flow systems, where they may lead either to deterioration

or improvement of the desired functionality. Nature provides numerous instances
where rough surfaces are essential for the survival of many species of air and marine
animals. For instance, as noted by Bechert (1987), shark scales have humplets, so
spatial variations in their placement should lead to at least as good a drag reduction
as that found for streamwise aligned riblets by Chu & Karniadakis (1993).

Wall roughness can be increased to promote mixing of the fluid, or reduced to
eliminate flow disturbances. The related problem of the laminar–turbulent transition
over a rough wall is one of the classical problems in fluid mechanics that has so
far defied all analytical efforts. Qualitative understanding of the mechanisms through
which surface roughness may affect transition is of considerable practical importance,
it touches almost every field of fluid dynamics from biology to aeronautics.

Some experiments (Feindt 1956; Kendall 1981; Reshotko & Leventhal 1981;
Reshotko 1984; Corke, Bar Sever & Morkovin 1986) have shown that roughness
enhances transition in the sense that under otherwise identical conditions transition
occurs at a lower Reynolds number on a rough surface than on a smooth surface. The
existence of roughness elements gives rise to additional disturbances in the laminar
stream which have to be added to those coming from the environment. If disturb-
ances created by the roughness elements are larger than those coming from the en-
vironment, we should expect that a lower degree of amplification will be sufficient to
effect the transition. On the other hand, if the roughness height is sufficiently small,
it has no effect on the transition process; the corresponding walls are considered
to be hydraulically smooth. Ability of roughness elements to significantly alter tran-
sition depends, beside their size, on their geometrical form and their distribution. The
real challenge is to identify mechanisms through which surface roughness may affect
transition and to provide conservative transition prediction criteria that can be used
in the case of roughness-sensitive engineering designs.
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Division, Research Labs, Eastman Kodak Company, Rochester, NY 14650-2121, USA.
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Analysis of flows over rough/corrugated boundaries is conditional upon availability
of algorithms capable of determining spectral composition of flow with spectral
accuracy. The available approaches can be divided into two categories. In the first
one, the irregular flow domain is mapped onto a regular computational domain.
Imposition of the flow boundary conditions becomes simple; however, we have to
work with a much more complex form of the flow field equations. In the second
approach, we work directly in the physical domain. The field equations have a very
simple form; however, we have to develop special procedures for the imposition of
boundary conditions.

The effect of the presense of roughness can be judged by analysing the change in
the behaviour of small disturbances in the roughness modified flow as compared to
the flow over a smooth wall. Growth of small disturbances in the case of a smooth
channel is described by the classical linearized operator; this growth can have two
forms. The asymptotic growth (as t → ∞) is described by the eigenvalues of this
operator. The flow is considered to be stable if there are no unstable eigenvalues.
Even if all eigenvalues are stable, the disturbances can be subject to initial growth,
so-called transient growth, owing to the interdependence of various modes associated
with the non-normality of the operator. This transient growth may be sufficient to
bring disturbances to the level where they can trigger a by-pass transition. These issues
are discussed by Schmid & Henningson (2001). Presence of roughness is expected
to modify the above processes. Roughness can also introduce new forms of flow
response not found in the case of the smooth channel. The goal of the present
analysis is to determine how the roughness affects the asymptotic (as t→ ∞) growth
of disturbances. The normal modes approach is used and the problem is posed as an
eigenvalue problem.

The paper is organized as follows. Section 2 describes the reference flow and
a method based on domain transformation (DTM). Section 3 describes the linear
stability problem of the modified Poiseuille flow using DTM and carries out the
stability analysis for a test problem with upper and lower roughness described by one
Fourier harmonic. Section 4 discusses the linear stability characteristics of the above
flow. In § 5, a short summary of our main conclusions is given.

2. Flow in a corrugated channel
This section describes a method for determination of the form of the flow in the

corrugated channel

2.1. Reference flow

Consider plane Poiseuille flow confined between flat rigid walls at y = ±1 and
extending to infinity in the x-direction (figure 1a). The fluid motion is described by
the following velocity and pressure fields

v0(x, y) = [u0(x, y), v0(x, y)] = [U(y), 0] = [1− y2, 0], (2.1)

p0(x, y) ≡ P0(x) = − 2x

Re
, (2.2)

where the fluid is directed towards the positive x-axis and the Reynolds number Re
is based on the half-channel height (L) and the maximum x-velocity (Umax). This flow
is driven by a constant pressure gradient.
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Figure 1. Sketch of the flow domain. (a) Straight (reference) channel,
(b) channel with corrugated walls.

It is convenient to introduce another reference flow in the form

v0(x, y) = [u0(x, y), v0(x, y)] = [U(y), 0] =

[
1

1− γ −
y2

(1− γ)3
, 0

]
, (2.3)

p0(x, y) ≡ P0(x) = − 2x

Re(1− γ)3
. (2.4)

This is a Poiseuille flow confined between walls y = ±(1 − γ) that carries the same
mass flux as the flow (2.1)–(2.2). Flow (2.3)–(2.4) is convenient for discussion of the
effects of simple wall displacement.

2.2. Effects of wall corrugations

Consider the upper and lower walls to have arbitrary shapes described by hU(x) and
hL(x) (figure 1b), respectively, and characterized by certain periodicity with wavelength
λx = 2π/α. The shape of the walls can be expressed in terms of a Fourier series in the
form

hU(x) = 1 +

+∞∑
n=−∞

(An)Ueinαx, hL(x) = −1 +

+∞∑
n=−∞

(An)Leinαx, (2.5)

where (An)U = (An)
∗
U and (An)L = (An)

∗
L in order for hU(x) and hL(x) to be real, and

an asterisk denotes the complex conjugate. The subscripts L and U refer to the lower
and upper walls, respectively. The effect of corrugations occurs due to (i ) the change
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of the mean location of the walls (as described by (Ao)L and (Ao)U), and (ii ) changes
in the shape of the walls (described by (An)L and (An)U , n 6= 0). For example, when
both walls are displaced inward by distance γ, the reference flow assumes the form
(2.3)–(2.4) rather than (2.1)–(2.2). Obviously, form (2.3)–(2.4) does not account for
changes in the geometry of the walls.

The fluid motion in the corrugated channel is described by the following velocity
and pressure fields

v2(x, y) = [uT (x, y), vT (x, y)] = v0(x, y) + v1(x, y)

= [U(y), 0] + [u(x, y), v(x, y)], (2.6)

p(x, y) = P0(x) + p1(x, y), (2.7)

where v0 and P0 denote the velocity and pressure fields associated with the flow in the
reference channel, v1 and p1 stand for the velocity and pressure field modifications
associated with the presence of the wall corrugation, and uT and vT denote the total
x and y velocity components, respectively.

The velocity and pressure fields satisfy the Navier–Stokes and continuity equations
subject to the following boundary conditions

v2(x, hU(x)) = 0, v2(x, hL(x)) = 0. (2.8)

Introduction of the stream function

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.9)

and elimination of pressure, result in the following equation for ψ[(
U +

∂ψ

∂y

)
∂

∂x
− ∂ψ

∂x

∂

∂y

]
∆ψ − d2U

dy2

∂ψ

∂x
=

1

Re
∆(∆ψ), (2.10)

where ∆ denotes the Laplace operator.
The problem formulation has to be completed by specifying two additional con-

ditions for ψ at the walls. In the present analysis, problem (2.8)–(2.10) is closed under
the assumption that the volume flux in the corrugated channel is the same as the
volume flux in the reference (smooth) channel, i.e.

Ψ (hL(x)) + ψ(x, hL(x)) = B (B is an arbitrary constant), (2.11)

Ψ (hU(x)) + ψ(x, hU(x)) = B + Q (Q is the volume flux), (2.12)

whereΨ denotes the streamfunction corresponding to the plane Poiseuille flow (Q = 4
3
,

Ψ (−1 + γ) = 0). In all test calculations presented in this paper, constant B was taken
to be zero.

2.3. Domain transformation

We shall deal with the difficulties due to the presence of irregular boundaries by
mapping the physical domain into a rectangular computational domain as shown in
figure 2. Here, we use an analytical mapping in the form

ξ = x, η = 2
(y − hU(x))

hU(x)− hL(x)
+ 1, (2.13)
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Figure 2. Mapping from physical to computational domain. (a) Physical domain,
(b) Transformed domain.

in order to avoid additional errors associated with numerical mappings. Equation
(2.10) becomes{

∆− Re
[(
U +

2

hU − hL
∂ψ

∂η

)(
∂

∂ξ
+ a12

∂

∂η

)
− 2

hU − hL
×
(
∂ψ

∂ξ
+ a12

∂ψ

∂η

)
∂

∂η

]}
∆ψ +

4Re

(hU − hL)2

∂2U

∂η2

(
∂ψ

∂ξ
+ a12

∂ψ

∂η

)
= 0, (2.14)

where the forms of the coefficients and differential operators are given in Appendix A.
The adherence condition at the boundaries is given by

∂ψ

∂ξ
= 1

2
a12(hU − hL)U,

∂ψ

∂η
= − 1

2
(hU − hL)U (η = ±1). (2.15)

Notice that the stream function definition (2.9) is not changed. In the (ξ, η)-coordinates
it has the form

u =
2

hU − hL
∂ψ

∂η
, v = −

(
∂ψ

∂ξ
+ a12

∂ψ

∂η

)
. (2.16)

Since the shape of the walls is given by (2.5), it is convenient to represent Poiseuille
flow and the corresponding streamfunction Ψ in terms of Fourier expansions in the
form

U(ξ, η) =

+∞∑
n=−∞

Un(η)einαξ, Ψ (ξ, η) =

+∞∑
n=−∞

Ψ̂n(η)einαξ, (2.17)

where expressions for Un, Ψ̂n are given in Appendix B.
The unknown streamfunction can be represented as

ψ(ξ, η) =

+∞∑
n=−∞

Φn(η)einαξ. (2.18)

Substitution of (2.16) and (2.18) into boundary conditions (2.8) and separation of
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Fourier modes results in boundary conditions for each mode in the form

Φ′n = −Un − 1

2

+∞∑
k=−∞

BkUn−k (n > 0, η = ±1), (2.19)

2inαΦn +

+∞∑
k=−∞

i(n− k)αBkΦn−k = −
+∞∑
k=−∞

[2ikα(Ak)U + 2ikαBk]Un−k

−
+∞∑

m=−∞

+∞∑
k=−∞

[ikα(Ak)U + ikαBk]BmUn−m−k (n > 1, η = −1), (2.20)

2inαΦn +

+∞∑
k=−∞

i(n− k)αBkΦn−k = −
+∞∑
k=−∞

2ikα(Ak)UUn−k

−
+∞∑

m=−∞

+∞∑
k=−∞

ikα(Ak)UBmUn−m−k (n > 1, η = 1), (2.21)

where Bn = (An)U − (An)L. The fixed volume flux condition leads to conditions in the
form

Φ0(−1) = 0, Φ0(1) = 4
3
− Ψ̂0(1) + Ψ̂0(−1). (2.22)

Substitution of (2.18) into field equation (2.14) and separation of Fourier compo-
nents leads to an infinite system of complex ordinary differential equations. Because
of the length of these equations, their explicit form will not be given. The entire set
of equations is described in Cabal (1998).

All numerical calculations discussed in this section have been carried out for the
upper and lower walls in the form

−(A0)U = (A0)L = γ, (A1)U = (A1)L = s,
(An)U = (An)L = 0 for n > 2,

}
(2.23)

i.e. both walls have identical, symmetric corrugations described by cosine function
with amplitude 2s and with mean location moved into the channel by distance γ. For
this particular case, the Fourier representation (2.17) of the Poiseuille flow has the
form

U0 =
1

1− γ −
2s2

(1− γ)3
− η2

1− γ , U1 = − 2sη

(1− γ)2
, (2.24)

U2 = − s2

(1− γ)3
, Un = 0 (n > 3).

The differential equations for Φn are presented in Appendix C.

2.4. Numerical solution

After truncation of (2.18) to N modes, system (C 1)–(C 7) is solved using a variable-
step-size finite-difference discretization with deferred corrections (see Pereyra 1979;
Cash & Wright 1991). The solution strategy used in order to guarantee convergence
of the iterative process consists of obtaining at first a solution to the problem when
N = 1, then these results are used as an initial approximation of the solution for
N = 2. Solution for N = 2 is used as an initial guess of the solution for N = 3, and
so on. Owing to the nature of the solution around the boundaries, a continuation
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procedure had to be employed for N > 2. All calculations have been carried out with
the machine-level accuracy. Details of the method can be found in Cabal, Szumbarski
& Floryan (2001).

The contributions of different modes can be assessed by calculating their energy.
The energy of mode n is defined as

En :=
α

4π

∫ 1

−1

∫ ξ0+(2π/α)

ξ0

u2
n + v2

n

2
dξdη (2.25)

where

un = ûn(η)einαξ + c.c., vn = v̂n(η)einαξ + c.c.

and c.c. stands for complex conjugate. From (2.16) and (2.18), we obtain

ûn =
1

1− γ
dΦn
dη

, (2.26)

v̂n = −iαnΦn − iαs

1− γ
dΦn+1

dη
+

iαs

1− γ
dΦn−1

dη
, (2.27)

which leads to expressions for energy in the form

E0 =
1

2

∫ 1

−1

u2
0 + v2

0

2
dη

=
1

4(1− γ)2

∫ 1

−1

[(
dΦ0

dη

)2

+ 4α2s2
(

Im

(
dΦ1

dη

))2
]

dη (2.28)

and

En =
1

2

∫ 1

−1

(|ûn|2 + |v̂n|2) dη

=
1

2

∫ 1

−1

(
1

(1− γ)2

∣∣∣∣dΦndη

∣∣∣∣2 + α2

∣∣∣∣ s

(1− γ)
dΦn+1

dη

− s

(1− γ)
dΦn−1

dη
+ nΦn

∣∣∣∣2
)

dη (n > 1). (2.29)

Variations of energy of modes 0, 1 and 2 as a function of corrugation amplitude
2s are depicted in figure 3 for three different values of the shift parameter γ. All
calculations were performed using six modes, i.e. streamfunction expansion (2.18)
was truncated at N = 5. It can be seen that for Re = 5000, mode interaction is
rather weak for corrugation amplitudes 2s 6 10−2. The flow velocity in the expanded
channel (γ = −0.1) is smaller and thus the corresponding energy levels are lower. The
opposite occurs with the reduction of the channel width. Because of the use of the
reference flow (2.3), the zero mode describes purely nonlinear effects even for γ 6= 0.

3. Linear stability
3.1. Problem formulation

Unsteady, three-dimesional disturbances are superimposed on the mean part of the
flow (2.6) in the form

v = v2(ξ, η) + v3(ξ, ζ, η, t), (3.1)
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Figure 3. Variations of energy of flow modifications induced by wall corrugations as a function of
the corrugation amplitude 2s for Re = 5000, α = 3.0, γ = −0.1, 0 and 0.1.

where

(x, z, y, t) −→ (ξ, ζ, η, t); (3.2)

ξ = x, ζ = z, η = 2
(y − hU(x))

hU(x)− hL(x)
+ 1.

Subscripts 2 and 3 refer to the mean flow and the disturbance field, respectively.
Defining vorticity in the (ξ, ζ, η)-variables as

ω =

(
∂v

∂ζ
− a0

∂w

∂η
, a0

∂u

∂η
−
(
∂v

∂ξ
+ a12

∂v

∂η

)
,
∂w

∂ξ
+ a12

∂w

∂η
− ∂u

∂ζ

)
, (3.3)

relations (3.1) and (3.3) yield

ω = ω2(ξ, η) + ω3(ξ, ζ, η, t), (3.4)

where

ω2 = (0, φ2, 0), ω3 = (θ3, φ3, ψ3); (3.5)

φ2 = a0

∂u2

∂η
−
(
∂v2

∂ξ
+ a12

∂v2

∂η

)
,

θ3 =
∂v3

∂ζ
− a0

∂w3

∂η
,

φ3 = a0

∂u3

∂η
−
(
∂v3

∂ξ
+ a12

∂v3

∂η

)
,
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ψ3 =
∂w3

∂ξ
+ a12

∂w3

∂η
− ∂u3

∂ζ
,

a0(ξ) =
2

hU(ξ)− hL(ξ)
,

and a12(ξ, η) is given in Appendix A. The assumed form (3.1) of the flow field is
substituted into the vorticity transport form of the governing equations, the mean
part is subtracted and the equations are linearized. The resulting linear disturbance
equations have the form

∂θ3

∂t
+ u2

(
∂θ3

∂ξ
+ a12

∂θ3

∂η

)
− φ2

∂u3

∂ζ
+ a0v2

∂θ3

∂η

−θ3

(
∂u2

∂ξ
+ a12

∂u2

∂η

)
− a0ψ3

∂u2

∂η
=

1

Re
∆θ3, (3.6)

∂φ3

∂t
+ u2

(
∂φ3

∂ξ
+ a12

∂φ3

∂η

)
− φ2

∂w3

∂ζ
+ a0v2

∂φ3

∂η

+u3

(
∂φ2

∂ξ
+ a12

∂φ2

∂η

)
+ a0v3

∂φ2

∂η
=

1

Re
∆φ3, (3.7)

∂ψ3

∂t
+ u2

(
∂ψ3

∂ξ
+ a12

∂ψ3

∂η

)
− φ2

∂v3

∂ζ
+ a0v2

∂ψ3

∂η

−θ3

(
∂v2

∂ξ
+ a12

∂v2

∂η

)
− a0ψ3

∂v2

∂η
=

1

Re
∆ψ3, (3.8)

∂u3

∂ξ
+ a12

∂u3

∂η
+
∂w3

∂ζ
+ a0

∂v3

∂η
= 0, (3.9)

with adherence condition at the boundaries given by

u3 = 0, w3 = 0, v3 = 0, η = ±1. (3.10)

In system (3.6)–(3.9), operator ∆ is defined by

∆ =
∂2

∂ξ2
+ 2a12(ξ, η)

∂2

∂ξ∂η
+

∂2

∂ζ2
+ a22(ξ, η)

∂2

∂η2
+ a2(ξ, η)

∂

∂η
. (3.11)

It should be noticed that only two of the vorticity equations (3.6)–(3.8) are indepen-
dent.

In the case of test geometry defined by (2.23), the above equations simplify to the
form given in Appendix D.

The mean flow is assumed to have the form

v2(ξ, η) = [U(η), 0,V(η)] + {[fu(η), 0, fv(η)]eiαξ + c.c.}
+{[Fu(η), 0, Fv(η)]e2iαξ + c.c.}, (3.12)

i.e. it is limited to the first three modes only. Such description provides means for
complete representation of the Poiseuille flow in the transformed domain as well
as sufficiently accurate representation of the flow modifications in the case of small
amplitudes of surface corrugations, as discussed in § 2.3.

In order to assess the effects of nonlinearities in the basic state on the stability
properties of the flow, three representations of the mean flow will be used. When
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N = 1, flow (3.12) consists of the complete representation of the Poiseuille flow (see
(2.17) and (2.24)) and mode n = 1 describing flow modifications (see (2.18)). When
N = 0 and 1, mode corresponding to n = 0 in (2.18) is added. When N = 0, 1
and 2, modes corresponding to n = 0, 1 and 2 from (2.18) are included in (3.12). In
each case, (2.18) is truncated at N = 5 and the resulting nonlinear system is solved
without further approximations (§ 2.4). Particular modes are then extracted for use in
the stability analysis, as described above.

The disturbance equations (D 1)–(D 4) have coefficients that are functions of ξ
and η only. This permits separation of variables and representation of the t and ζ
dependence of the solution in the form

v3(ξ, ζ, η, t) = u3(ξ, η)ei(σt+µζ). (3.13)

The exponent µ is real and accounts for the spanwise periodicity of the disturbance
field. The exponent σ is assumed to be complex. Its imaginary part describes the
rate of growth of the disturbances while its real part describes the frequency of the
disturbances.

Since the coefficients in (D 1)–(D 4) are periodic in ξ with periodicity 2π/α, u3 is
written, following the Floquet theory, as

u3(ξ, η) = eiδξw3(ξ, η) = eiδξ

+∞∑
m=−∞

Gm(η)eimαξ, (3.14)

where w3 is periodic in ξ with the same periodicity 2π/α and δ is referred to as the
Floquet exponent. It should be noted that u3 is a product of two functions periodic
in ξ, one with a period 2π/α and one with a period 2π/δ. This product is periodic
only if δ/α is rational.

The final form of the disturbance velocity vector is written as

v3(ξ, ζ, η, t) =

+∞∑
m=−∞

[g(m)
u (η), g(m)

w (η), g(m)
v (η)]ei[(δ+mα)ξ+µζ+σt]. (3.15)

Substitution of (3.12) and (3.15) into the disturbance equations given in Appendix D
and separation of the Fourier components results, after rather lengthy algebra, in a
system of linear ordinary differential equations governing g(m)

u , g(m)
w , g(m)

v , whose form
is given in Appendix E.

The relevant boundary conditions can be deduced from (3.10), (3.15) and (E 3), i.e.

g(m)
u = 0, g(m)

v = 0, g(m)
w = 0 (η = ±1), (3.16)

d

dη
g(m)
v = iαs

d

dη
g(m−1)
u − iαs

d

dη
g(m+1)
u (η = ±1). (3.17)

In the absence of wall corrugation (s = 0) all modes from the Fourier series (3.15)
decouple and equations (E 1)–(E 3) with boundary conditions (3.16)–(3.17) describe
the classical three-dimensional instability of the plane Poiseuille flow. The coupling
due to the presence of corrugation effects in the field equations involves eleven
consecutive modes of the Fourier expansion (3.15). The coupling due to the presence
of corrugation effects in the boundary conditions involves three consecutive modes.

3.2. Computational method

The eigenvalue problem to be solved is described by an infinite set of coupled linear
homogeneous ordinary differential equations (E 1)–(E 3) with homogeneous boundary
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Number of Fourier modes used to
represent disturbance field (see (3.15))

Number of Chebyshev
polynomials M = 0, 1, 2 M = 0, 1, 2, 3 M = 0, 1, 2, 3, 4

Number of Fourier modes used to represent flow modifcations
induced by wall corrugation (see (3.12))

N = 1
60 0.240× 10−3 0.257× 10−3 0.249× 10−3

70 0.248× 10−3 0.243× 10−3 0.245× 10−3

80 0.238× 10−3 0.237× 10−3 0.238× 10−3

90 0.238× 10−3 0.237× 10−3 0.238× 10−3

Number of Fourier modes used to represent flow modifcations
induced by wall corrugation (see (3.12))

N = 0, 1
60 0.199× 10−3 0.215× 10−3 0.206× 10−3

70 0.187× 10−3 0.184× 10−3 0.185× 10−3

80 0.184× 10−3 0.184× 10−3 0.184× 10−3

90 0.185× 10−3 0.184× 10−3 0.185× 10−3

Number of Fourier modes used to represent flow modifcations
induced by wall corrugation (see (3.12))

N = 0, 1, 2
60 0.192× 10−3 0.229× 10−3 0.209× 10−3

70 0.186× 10−3 0.187× 10−3 0.185× 10−3

80 0.186× 10−3 0.185× 10−3 0.186× 10−3

90 0.187× 10−3 0.184× 10−3 0.187× 10−3

Table 1. Amplification rate −Im(σ) of the corrugation-induced instability for Re = 5000, γ = 0,
2s = 0.014, α = 2.0, µ = 2.0 and δ = 0.

conditions (3.16)–(3.17). Approximate solutions can be found by truncating the sum
in (3.15) after a finite number M of terms and solving 6M + 3 differential equations
of type (E 1)–(E 3).

The finite-dimensional system obtained after truncation is discretized by employing
a pseudospectral method based on Chebyshev polynomials (see Gottlieb & Orszag
1977; Boyd 1988; Canuto et al. 1988; Tang 1994; Fornberg 1996 for comprehensive
reviews of the method). The original differential eigenvalue problem is replaced by
an algebraic eigenvalue problem expressed in terms of a discretization matrix. In
the present analysis, the problem is posed as a linear eigenvalue problem for σ. The
σ-spectrum is computed for any combination of parameters Re, α, γ, δ, µ and s using
standard methods.

Various test have been carried out in order to determine the minimum mean
flow representation (see (3.12)), the minimum truncation M of the disturbance field
representation (3.15) and the minimum number of Chebyshev polynomials used for
discretization. Table 1 displays the amplification rate −Im(σ) of the corrugation-
induced instability as a function of the above parameters. The results show that for
the values of corrugation amplitudes of interest in the present study, the eigenvalues
can be determined with accuracy no worse than 0.1% using mean flow representation
N = 0, 1 and 2, disturbance field truncation M = 3 and 80 Chebyshev polynomials.
These results also show that the mean flow representation with N = 1 only (such
that could be implied by a linear model of corrugation effects) is not acceptable.
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Figure 4. Amplification rate −Im(σ) as a function of the spanwise wavenumber µ for the
corrugation-induced instability for Re = 3000. – – –, 2s = 0.02; ——, 2s = 0.022.

The nonlinear flow distortion corresponding to N = 0 plays a significant role in the
instability studied here.

4. Discussion of results
We consider temporal stability theory, i.e. the exponent δ in (3.15) is assumed to be

real. Exponent µ is real and accounts for the spanwise periodicity of the disturbance
field. Exponent σ is complex and its imaginary part describes the rate of growth of
the disturbances. All results presented below are for surface corrugation in the form
(2.5), (2.23) with γ = 0, i.e. the corrugation is periodic in the streamwise direction
with period 2π/α, it has the form of a simple cosine wave, it is the same at the upper
and lower walls, and its presence does not affect the mean location of the walls.

Poiseuille flow in a channel without corrugation becomes linearly unstable at
ReTS = 5772.22 and the critical disturbance has the form of a two-dimensional wave
travelling in the streamwise direction. This wave is frequently referred to as the
Tollmien–Schlichting (TS) wave and its critical wavenumber is αcr ≈ 1.0. Questions
to be addressed in this discussion are (i) whether the TS waves dominate the linear
instability in the presence of wall corrugation and how much they are affected by the
corrugation, and (ii) whether the wall corrugation can induce a different instability
that could overshadow the TS waves and what is the form of such an instability.

Results of the present analysis show that the presence of wall corrugation leads
to the appearance of growing disturbances at Reynold’s number Re < ReTS . The
disturbances have the form of streamwise vortices, i.e. the dominant mode corresponds
to m = 0 in (3.15). The disturbances are fixed with respect to the wall and do not
propagate, i.e. Re(σ) = 0 in (3.15). A whole band of the spanwise wavenumbers µ is
amplified and the width of this band increases with an increase of both the corrugation
amplitude 2s and the flow Reynolds number Re (see figures 4 and 5). Disturbances
with µ ≈ 2.15 appear to have the largest amplification rates. Corrugation with the
wavenumber α ≈ 3 appears to be the most dangerous in the sense that it induces
disturbances with the highest amplification rates.

Appearance of streamwise vortices results in a significant rearrangement and rapid
three-dimensionalization of the flow field. Uplifting of low-momentum fluid away
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Figure 5. Amplification rate −Im(σ) as a function of the spanwise wavenumber µ for the corru-
gation-induced instability for Re = 5000. – - –, 2s = 0.013; ——, 2s = 0.014; – – –, 2s = 0.014 and
N = 1 (‘linear’ model).

from the wall leads to the formation of highly distorted streamwise and spanwise
velocity profiles that are functions of spanwise and streamwise coordinates and
are subject to very strong secondary instabilities. The qualitative character of the
instability is very similar to instability induced by periodic suction (Floryan 1997). It
has been shown by direct numerical simulation that the suction-induced instability
leads to a new (by-pass) route to transition (Floryan, Yamamoto & Murase 1992).

Results displayed in figure 5 and table 1 demonstrate the effect of the use of
different models of the mean flow. Use of the one-mode N = 1 representation of
the mean flow leads to overprediction of the growth rates. The minimum acceptable
model consists of modes N = 0, 1 and 2 in the range of corrugation amplitudes
subject to this investigation. The same conclusion can be deduced from the results
shown in figure 3. The flow modifications are more complex as compared to the
case of flow modified by periodic suction (Floryan 1997) where only one mode was
sufficient to describe flow modifications capable of inducing instability.

Figure 6 displays amplification rates of two-dimensional TS wave with α = 1
(critical TS wave) as a function of the Reynolds number Re for different corrugation
amplitudes. It can be seen that an increase of corrugation amplitude makes this insta-
bility more pronounced. Since these waves are driven by shear, it is the modification
of shear due to the presence of wall corrugation that is responsible for the increased
amplification.

Modifications of flow due to wall corrugation may create local inflection points
in the velocity profile which may activate an inviscid instability mechanism. Careful
analysis of the stability spectra failed to identify the presence of any such instability
in the range of parameters subject to this investigation.

Figure 6 displays amplification rates for the most amplified vortices (α = 3, µ = 2.15)
and critical TS waves (α = 1). It can be seen that an increase of the corrugation
amplitude destabilizes the flow, the amplification rates of disturbances increase and
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Figure 6. Amplification rate −Im(σ) as a function of the Reynolds number Re for the corru-
gation-induced instability (——, µ = 2.15, α = 3.0) and for two-dimensional TS-waves (– – –, µ = 0,
α = 1.0).
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Figure 7. Amplification rate −Im(σ) as a function of the corrugation amplitude 2s for the cor-
rugation-induced instability (——, µ = 2.15, α = 3.0) and for the two-dimensional TS-waves
(– – –, µ = 0, α = 1.0).

the minimal Reynolds number at which they appear decreases. Vortices may appear
at Reynolds numbers smaller than those required to induce TS waves.

Figure 7 illustrates the effect of corrugation amplitude on the amplification rates of
two-dimensional TS waves (α = 1) and vortices with µ = 2.15, α = 3. An increase of
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Figure 8. Amplification rate −Im(σ) of the corrugation-induced instability as a function of the
corrugation Reynolds number Rer for µ = 2.15, α = 3.0.

the amplification rates of TS waves and an almost linear increase of the amplification
rates of vortices with increase of 2s can be seen clearly. These results also demonstrate
that given a particular value of the Reynolds number, we can always find (in the range
of parameters studied) a corrugation amplitude that would give rise to streamwise
vortices.

Information regarding the maximum corrugation amplitude the flow can accom-
modate for a given Re without inducing streamwise vortices can be extracted from
figures 4–7. The results may be interpreted better by using corrugation Reynolds
number defined as Rer = Utr2s/ν = Re8s2(1 − s), where Utr stands for the undis-
turbed velocity at the top of the corrugation. Figure 8 displays variations of the
amplification rate of vortices as a function of Reynolds number Re for various values
of Rer for the most amplified disturbances (α = 3.0, µ = 2.15). It can be seen that the
disturbances are not amplified if Rer < 1.2 (in the range of parameters studied). When
Rer 6 3, the amplification rates increase monotonically with Re and appear to reach
an asymptotic value whose magnitude depends on Rer . For Rer > 4, this trend is
reversed in the sense that there is a gradual monotomic decrease of the amplification
rates towards their (apparent) asymptotic limit.

5. Conclusions
Stability of Poiseuille flow modified by wall corrugation has been considered. The

analysis is focused on a test problem with wall-corrugation in the form of a single
two-dimensional Fourier mode with the same shape at the upper and lower walls. The
analysis consists of two parts, i.e. (i) determination of the new corrugation-modified
flow, and (ii) a linear stability analysis of this flow.

Results of linear stability analysis show the existence of two modes of instability.
The first mode gives rise to streamwise vortices and is induced by wall waviness. Such
vortices are asymptotically stable (in the sense of eigenvalue analysis) in the absence
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of wall waviness. The second mode gives rise to travelling-wave instability. These
waves can be viewed as Tollmien–Schlichting (TS) waves modified by the presence of
wall waviness.

The range of corrugation wavenumbers α that leads to the instability giving rise
to streamwise vortices is bounded from above and below. The most dangerous
corrugation wavenumber, in the sense that it leads to the most amplified vortices,
corresponds to α ≈ 3. The instability amplifies a continuous band of spanwise vortex
wavenumbers µ. The most amplified vortex corresponds to µ ≈ 2.15. The range of
unstable wave numbers α and µ increases with the increase of both the flow Reynolds
numbers and the corrugation amplitude 2s.

The disturbances in the form of travelling waves have a form very similar to
TS waves. In the limit of zero corrugation amplitude, they reduce to TS waves.
These waves are destabilized by the presence of wall corrugation, with the critical
Reynolds number being reduced by about 10% in the range of parameters studied.
This reduction is proportional to the amplitude of the corrugation. The amplification
rates increase significantly with an increase of the corrugation amplitude 2s.

For corrugation amplitude 2s > 0.014, the vortex instability occurs at Reynolds
numbers lower than those required for the initiation of the travelling wave instability.
Since the presence of streamwise vortices is a strong harbinger of transition to
turbulence, we are interested in determining the maximum corrugation amplitude
that the flow can accommodate without inducing such vortices. It has been shown
that the vortex instability does not occur if the roughness Reynolds Rer < 1.2 in the
range of parameters studied (Re 6 104).

The authors would like to express their thanks to S. Krol and M. Floryan for
carrying out computations and processing of the data. The authors would also like
to thank P. J. D. Roberts for his assistance in the editing of this work. This research
was supported by the Natural Science and Engineering Research Council of Canada
(NSERC), Canadair and Bombardier de Havilland Inc.

Appendix A

∆ =
∂2

∂ξ2
+ 2a12(ξ, η)

∂2

∂ξ∂η
+ a22(ξ, η)

∂2

∂η2
+ a2(ξ, η)

∂

∂η
,

a12(ξ, η) = − 1

hU(ξ)− hL(ξ)

[
2

dhU
dξ

+ (η − 1)

(
dhU
dξ
− dhL

dξ

)]
,

a22(ξ, η) =
1

(hU(ξ)− hL(ξ))2
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2

dhU
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dhU
dξ
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dξ

)]2
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}
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a2(ξ, η) = − 1

(hU(ξ)− hL(ξ))2
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dξ2
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d2hU

dξ2
− d2h2

dξ2
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× (hU(ξ)− hL(ξ))− 2

[
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dhU
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+ (η − 1)

(
dhU
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− dhL
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)](
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dξ
− dhL

dξ

)}
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Appendix B
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where Bn = (An)U − (An)L.

Appendix C
Differential equations for Φn in (2.18) for the upper and lower walls given by (2.23)

have the following form

K4,nΦn+4 +K3,nΦn+3 +K2,nΦn+2 +K1,nΦn+1 +K0,nΦn +K−1,nΦn−1

+K−2,nΦn−2 +K−3,nΦn−3 +K−4,nΦn−4 − iαRe

+∞∑
l=−∞

Un−l

×(L3,lΦl+3 +L2,lΦl+2 +L1,lΦl+1 +L0,lΦl +L−1,lΦl−1 +L−2,lΦl−2

+L−3,lΦl−3) + iαRe

+∞∑
l=−∞

d2Un−l
dη2

(H1,lΦl+1 +H0,lΦl +H−1,lΦl−1) + iαRe

×
+∞∑
l=−∞

[
(n− l)Φn−l(M2,lΦl+2 +M1,lΦl+1 +M0,lΦl +M−1,lΦl−1 +M−2,lΦl−2)

+l
dΦn−l

dη
(N2,lΦl+2 +N1,lΦl+1 +N0,lΦl +N−1,lΦl−1 +N−2,lΦl−2)

]
= 0,

(C 1)

where the linear differential operators K, L, H, M and N are given below. The
corresponding boundary conditions at η = ±1 have the form

dΦ0

dη
=

2s2

(1− γ)2
, (C 2)

Φ1 =
s3

(1− γ)3
,

dΦ1

dη
= ± 2s

1− γ , (C 3)
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Φ2 = ± s2

(1− γ)2
,

dΦ2

dη
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s2
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, (C 4)

Φ3 =
1

3

s3

(1− γ)3
,

dΦn
dη

= 0 (n > 3), (C 5)

Φn = 0 (n > 4). (C 6)

and are supplemented by the fixed volume flux conditions in the form

Φ0(−1) = 0, Φ0(1) =
4s2
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, (C 7)
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Appendix D
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∂η
+
∂w3

∂ζ
+

1

1− γ
∂v3

∂η
= 0, (D 4)

where

∆ =
∂2

∂ξ2
− 2hξ

1− γ
∂2

∂ξ∂η
+

∂2

∂ζ2
+

1 + h2
ξ

(1− γ)2

∂2

∂η2
− hξξ

1− γ
∂

∂η
. (D 5)
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The mean flow satisfies the following equations

u2

(
∂φ2

∂ξ
− hξ

1− γ
∂φ2

∂η

)
+

v2

1− γ
∂φ2

∂η
=

1

Re
∆φ2, (D 6)

∂u2

∂ξ
− hξ

1− γ
∂u2

∂η
+

1

1− γ
∂v2

∂η
= 0. (D 7)

Appendix E

A(m)
u g(m)

u + A(m)
w g(m)

w + A(m)
v g(m)

v

= −(G(m)
u g(m−5)

u + G(m)
v g(m−5)

v + H(m)
u g(m−4)

u + H(m)
w g(m−4)

w + H(m)
v g(m−4)

v

+ I(m)
u g(m−3)

u + I(m)
w g(m−3)

w + I(m)
v g(m−3)

v + J(m)
u g(m−2)

u + J(m)
w g(m−2)

w

+ J(m)
v g(m−2)

v + K(m)
u g(m−1)

u + K(m)
w g(m−1)

w + K(m)
v g(m−1)

v + L(m)
u g(m+1)

u

+ L(m)
w g(m+1)

w + L(m)
v g(m+1)

v + M(m)
u g(m+2)

u + M(m)
w g(m+2)

w + M(m)
v g(m+2)

v

+ N(m)
u g(m+3)

u + N(m)
w g(m+3)

w + N(m)
v g(m+3)

v + Q(m)
u g(m+4)

u

+ Q(m)
w g(m+4)

w + Q(m)
v g(m+4)

v + R(m)
u g(m+5)

u + R(m)
v g(m+5)

v ), (E 1)

B(m)
u g(m)

u + B(m)
w g(m)

w + B(m)
v g(m)

v

= −(H(m)
u g(m−4)

u +H(m)
v g(m−4)

v +I(m)
u g(m−3)

u +I(m)
w g(m−3)

w

+I(m)
v g(m−3)

v +J(m)
u g(m−2)

u +J(m)
w g(m−2)

w +J(m)
v g(m−2)

v

+K(m)
u g(m−1)

u +K(m)
w g(m−1)

w +K(m)
v g(m−1)

v +L(m)
u g(m+1)

u

+L(m)
w g(m+1)

w +L(m)
v g(m+1)

v +M(m)
u g(m+2)

u +M(m)
w g(m+2)

w

+M(m)
v g(m+2)

v +N(m)
u g(m+3)

u +N(m)
w g(m+3)

w +N(m)
v g(m+3)

v

+Q(m)
u g(m+4)

u + Q(m)
v g(m+4)

v ), (E 2)

itmg(m)
u + iµg(m)

w +
1

1− γ
d

dη
g(m)
v − iαs

1− γ
d

dη
(g(m−1)
u − g(m+1)

u ) = 0. (E 3)

All differential operators in the above equations are linear. Their explicit form is
omitted from this presentation owing to excessive length requirements (60 pages).
Details can be found in Cabal (1998).

REFERENCES

Bechert, D. W. 1987 Experiments on three dimensional riblets. Turbulent Drag Reduction by Passive
Means. Royal Aeronautical Society, London.

Boyd, J. P. 1988 Chebyshev and Fourier Spectral Methods. Springer, New York.

Cabal, A. 1998 Stability of wall-bounded flow modified due to the presence of distributed surface
roughness. PhD thesis, The University of Western Ontario, London, Ontario, Canada.

Cabal, A., Szumbarski, J. & Floryan J. M. 2001 Numerical simulation of flows over corrugated
walls. Comput. Fluids, 30, 753–776.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics.
Springer. New York.



212 A. Cabal, J. Szumbarski and J. M. Floryan

Cash, J. R. & Wright M. H. 1991 A deferred correction method for nonlinear two-point boundary
value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12,
971–989.

Chu, D. C. & Karniadakis, G. E. 1993 A direct numerical simulation of laminar and turbulent
flow over riblet-mounted surfaces. J. Fluid Mech. 250, 1–42.

Corke, T. C., Bar Sever, A. & Morkovin M. V. 1986 Experiments on transition enhancement by
distributed surface roughness. Phys. Fluids 29, 3199–3213.

Feindt, E. G. 1956 Untersuchungen über die Abhängigkeit des Umschlages laminar-turbulent von
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